Noticias

2 teorias del universo



septiembre 21, 2022

Teorías del universo pdf

Las pruebas científicas apuntan a un origen en algún momento entre 10.000 y 20.000 millones de años atrás. La teoría del Big Bang es universalmente aceptada por quienes investigan el desarrollo del universo, las galaxias y las estrellas como la causa del origen del universo. La teoría del Big Bang dice que el universo se ha desarrollado expandiéndose a partir de un estado denso y caliente en el que todo explotó alejándose de todo lo demás. La causa de esta explosión no forma parte de la teoría del Big Bang. Debe considerarse como algo desconocido en este momento, aunque hay muchas ideas sobre la causa.

Fig. 14–El fondo cósmico de microondas es la radiación posterior al Big Bang. Aquí se muestran las fluctuaciones cosmológicas de la temperatura del fondo de microondas realizadas por el satélite Cosmic Background Explorer (COBE) (Spergel et al., 1999). Aunque son extremadamente uniformes en todo el cielo, las minúsculas variaciones de temperatura pueden ofrecer una gran información sobre el origen, el desarrollo y la estructura inicial del universo.

La mayor parte de la materia del universo está formada por elementos ligeros como el hidrógeno y el helio, además de un tipo adicional de materia oscura fría desconocida que aún no se conoce bien. Los elementos más pesados, como el carbono, el oxígeno y el silicio, necesarios para formar las rocas y los organismos vivos, se formaron en generaciones anteriores de estrellas que explotaron, dispersando los elementos por toda la galaxia. Estos elementos, a veces denominados cenizas, formaron parte de la materia que se agrupó para formar nuestro sistema solar. Los planetas como la Tierra están formados principalmente por los elementos más pesados. Se sabe que la Tierra tiene unos 4.500 millones de años; el universo es al menos tres veces más antiguo. Tuvieron que pasar muchas cosas para que se formara la Tierra.

Cuáles son las 5 teorías del origen del universo

¿Podría nuestro universo ser una membrana que flota en un espacio dimensional superior, chocando repetidamente con un universo vecino? Según una rama de la teoría de cuerdas llamada braneworld, existen grandes dimensiones extra del espacio y, aunque la gravedad puede llegar a ellas, estamos confinados en nuestro propio universo «brane» con sólo tres dimensiones. Neil Turok, de la Universidad de Cambridge (Reino Unido), y Paul Steinhardt, de la Universidad de Princeton (Nueva Jersey, EE.UU.), han descubierto cómo pudo producirse el Big Bang cuando nuestro universo chocó violentamente con otro. Estos choques se repiten, produciendo un nuevo big bang cada cierto tiempo, por lo que si el modelo de universo cíclico es correcto, el cosmos podría ser inmortal.

Cuando la materia se comprime a densidades extremas en el centro de un agujero negro, podría rebotar y crear un nuevo universo bebé. Las leyes físicas del hijo podrían diferir ligeramente, y de forma aleatoria, de las del padre, por lo que los universos podrían evolucionar, sugiere Lee Smolin, del Instituto Perimeter de Waterloo (Canadá). Los universos que hacen muchos agujeros negros tienen muchos hijos, por lo que acaban dominando la población del multiverso. Si vivimos en un universo típico, debería tener leyes físicas y constantes que optimicen la producción de agujeros negros. Todavía no se sabe si nuestro universo se ajusta a esta situación.

Comentarios

Las pruebas científicas apuntan a un origen entre 10.000 y 20.000 millones de años atrás. La teoría del Big Bang es universalmente aceptada por quienes investigan el desarrollo del universo, las galaxias y las estrellas como la causa del origen del universo. La teoría del Big Bang dice que el universo se ha desarrollado expandiéndose a partir de un estado denso y caliente en el que todo explotó alejándose de todo lo demás. La causa de esta explosión no forma parte de la teoría del Big Bang. Debe considerarse como algo desconocido en este momento, aunque hay muchas ideas sobre la causa.

Fig. 14–El fondo cósmico de microondas es la radiación posterior al Big Bang. Aquí se muestran las fluctuaciones cosmológicas de la temperatura del fondo de microondas realizadas por el satélite Cosmic Background Explorer (COBE) (Spergel et al., 1999). Aunque son extremadamente uniformes en todo el cielo, las minúsculas variaciones de temperatura pueden ofrecer una gran información sobre el origen, el desarrollo y la estructura inicial del universo.

La mayor parte de la materia del universo está formada por elementos ligeros como el hidrógeno y el helio, además de un tipo adicional de materia oscura fría desconocida que aún no se conoce bien. Los elementos más pesados, como el carbono, el oxígeno y el silicio, necesarios para formar las rocas y los organismos vivos, se formaron en generaciones anteriores de estrellas que explotaron, dispersando los elementos por toda la galaxia. Estos elementos, a veces denominados cenizas, formaron parte de la materia que se agrupó para formar nuestro sistema solar. Los planetas como la Tierra están formados principalmente por los elementos más pesados. Se sabe que la Tierra tiene unos 4.500 millones de años; el universo es al menos tres veces más antiguo. Tuvieron que pasar muchas cosas para que se formara la Tierra.

Teorías del universo línea de tiempo

Según las teorías de la física, si observáramos el Universo un segundo después del Big Bang, lo que veríamos es un mar de 10.000 millones de grados de neutrones, protones, electrones, antielectrones (positrones), fotones y neutrinos. A continuación, con el paso del tiempo, veríamos cómo el Universo se enfría, los neutrones decaen en protones y electrones o se combinan con los protones para formar deuterio (un isótopo del hidrógeno). Al seguir enfriándose, acabaría alcanzando la temperatura en la que los electrones se combinarían con los núcleos para formar átomos neutros. Antes de que se produjera esta «recombinación», el Universo habría sido opaco porque los electrones libres habrían provocado la dispersión de la luz (fotones) del mismo modo que la luz solar se dispersa de las gotas de agua en las nubes. Pero cuando los electrones libres fueron absorbidos para formar átomos neutros, el Universo se volvió de repente transparente. Esos mismos fotones -el resplandor del Big Bang conocido como radiación cósmica de fondo- pueden observarse hoy en día.

La segunda misión que examinó la radiación cósmica de fondo fue la Wilkinson Microware Anisotropy Probe (WMAP). Con una resolución muy mejorada en comparación con COBE, WMAP inspeccionó todo el cielo, midiendo las diferencias de temperatura de la radiación de microondas que está distribuida casi uniformemente por el Universo. La imagen muestra un mapa del cielo, con las regiones calientes en rojo y las más frías en azul. Al combinar estas pruebas con los modelos teóricos del Universo, los científicos han llegado a la conclusión de que el Universo es «plano», lo que significa que, a escalas cosmológicas, la geometría del espacio satisface las reglas de la geometría euclidiana (por ejemplo, las líneas paralelas nunca se encuentran, la relación entre la circunferencia del círculo y el diámetro es pi, etc.).

You Might Also Like